Tag Archive for: science

Of Overtones and Love Messages: How a Video Redefines the Boundaries of Vocal Control

In a universe where Valentine’s Day, Ash Wednesday and World Sound Healing Day magically come together, a fascinating video reveals the hidden world of vocal sounds: a spectrogram of curious vibrations that look like letters and form the words “I LOVE YOU”. But what exactly is behind this amazing phenomenon?

Welcome to the world of the secret language of overtones, a realm that only a few have explored. As the author of this blog, I have probably mastered one of the most precise controls of human vocal resonance on the planet. Because let’s be honest, who else but me could accomplish something so masterful? (Of course, you are welcome to prove me wrong at this point. And I would be very happy if you did. Just give it a try!)

The voice, a miracle of nature, harbours more secrets than most people can imagine. Did you know that the true essence of the voice lies in the resonances of the vocal tract?

Yes, the overtone chord may seem like the star of the stage, but the real magic lies in the resonances that make our voices unique. This is just the beginning of an exciting journey I want to take you on. Are you ready to push the boundaries of controlling your voice? Then subscribe to my newsletter so you never miss a post. Because there is still a lot to discover in the world of vocal resonance.

Do You Hear a Melody or Syllables? Saus’ Hearing Test.

In this video you will learn how to hear harmonics in vowels. This will open up a new dimension of sound perception to you. This way of hearing is rare on the fly, but it can be learned and is a prerequisite for understanding and learning choral phonetics. And it makes learning overtone singing easy and fast.

Do You Hear Syllables or a Melody?

After this video, your hearing is immediately changed, and that irreversibly. It is like a picture puzzle: once you have seen both sides, you will always see them. After the video, you are always able to hear harmonics in sounds. As soon as you have perceived both syllables and overtones, you can decide what you want to hear. And if you focus on harmonics for the next 3 weeks from today, your overtone hearing will become an integral part of your sound perception. Your brain will form new synapses.

Side Effects

You’ll be surprised what additional changes come after that:

  • You will hear more empathically, understand better how other people feel, just by hearing their voice.
  • When you sing in a choir, you will perceive intonation quite differently and unconsciously find a resonance with other voices.
  • Many also report that they perceive colors and scents more intensely afterwards.
  • You will notice a more conscious access to resonance in your voice.

If you immediately heard the melody in the first example, then you already were an overtone listener. Then the video will help you understand and become aware that you hear differently than 95% of the people around you.

But I Never Sang a Melody

One of the most exciting things about overtone listening for me is: In the end, everyone has heard the melody once, right? – but I never sang a melody! In all the singing examples, all the pitch frequencies are unchanged. I have not changed a single pitch. So in the classical sense I did not sing a melody. I only changed resonances and thus volume ratios, so in the classical sense I sang syllables on a single note, which is what most people heard at the beginning.

Despite Contradiction Everybody is Right

So if someone thought at the beginning that there was no melody, he was right, even when the melody became obvious to everyone. And everyone who hears a melody is also right. One would have to define melody independently of the tone pitch.

Many years ago, after I found out that others do not hear the same as I do, I had sent a sound file of the first example to various experts. But nobody found a melody, not even with the most modern methods of analysis. Why not? Because apparently no one thought to look for a melody. However, after hearing the melody, one finds it in the sound spectrum. But only as a volume pattern, not as a pitch change. Isn’t that exciting?

Personally, I have learned from this to approach perceptions of other people with less prejudice, especially people from the spiritual realm, who I might have dismissed as unscientific in the past. Leaving paradigms behind is probably part of the coming zeitgeist in many ways.

Find more information about the test as well as an audio version for download in my blogpost “A Melody Only Some Can Hear – Take the Hearing Test”.

Video Content

00:00 The magic of listening
00:21 Brain and sound processing
01:31 Melody hidden in syllables
01:50 Hearing test part 1 – 5% hear the melody
02:05 The melody revealed
02:58 Why some sounds remain hidden
04:02 Hearing test part 2 – 20% hear the melody
04:52 Hearing test part 3 – 40-60% hear the melody
05:20 Hearing test part 4 – 100% hear the melody
06:27 Steps to discover the melody
06:54 Step 1 – Overtone singing technique
07:03 Step 2 – Vowels between u and i
07:16 Step 3 – Consonant n
07:24 Step 4 – Consonants n and t
07:56 Step 5 – other consonants
08:32 Step 6 – Intermediate step consonant transitions
09:20 Trust your perception
09:56 Step 7 – back to syllables
10:18 Step 8 – your hearing has now been changed

Video Transcription

The most important thing in overtone singing is listening. It turns out that not everyone hears the overtones spontaneously. These are studies from the early 2000s in Heidelberg at the University Clinic, which showed that it depends on which part of the brain processes the sound. There is an auditory center on the right side that hears harmonics, and there is an auditory center on the left side that is responsible for the mathematical part of music, that is, intervals and melodies and rhythm and things like that. On the right hemisphere the timbre is analyzed, but that also includes the information of the overtones, which are usually not heard separately. And then there is an interpretation of sound as language. That happens on the left side in the Broca and Wernicke centers, which are both located on the left side. And now it’s important that when you sing overtones, that you hear the overtones. That means that you have to activate the right side, the right auditory cortex. For that, I have a test that you can use first to check where you stand, and at the end, there’s a systematic guide to the perception on the right hemisphere. So when this video is over, you’ll hear completely differently if you don’t already heared the overtones right from the first example. Now I’ll sing a meaningless sequence of syllables, and I’ll sing them on a single note, that means I won’t change any pitch, yet there’s a melody in these syllables, and I’ll hide this melody in the resonances of the vowels. Let’s see if you can hear that.

So, that was a very well-known melody from the classical period. As a little hint: It was composed in Bonn and I don’t want to hide it at all. The point is to learn to listen to it, it’s not about showing now what you can’t do, but just the opposite. It was “Joy, Beautiful Sparks of the Gods” in this register.

Typically, only 5% of people hear this melody spontaneously. If you now know what to listen for, you may now already have a little inkling of the melody or even hear it clearly. For those who don’t hear the melody now, this has nothing to do with musicality, but only with the preference on which side your brain processes this sound. There is usually a block when the left brain decides that this is speech, but it doesn’t understand a word. Then it tells the rest of the brain: Shut up, I need all the attention. And language is very dominant in our brain. That’s why this side, here the speech center, is apparently particularly active in most people. But now I would like to change this filter that says important and unimportant, language is important, timbre and overtones are unimportant. I would like to turn that around. And I do that by systematically removing information in the sound for the left side, for the speech center. I do this step by step in such a way that you will recognize at which point this flips over. At the end, you will definitely hear the melody.

Now I’ve only used Ü sounds like that, and that means in the phonetic vowel triangle I’ve only gone along vowels where the second formant, as they used to call it, or I call it “second resonant frequency”, changes. I left out all the frequencies that move in the direction of the vowel A, that would change the first resonance. So now usually there’s about 20% of the people who perceive the melody now. For the rest, I go one step further and leave out the consonants. Now usually about 40 to 60 % of the people are with me and hear this melody. If you don’t hear it yet, I go one step further.

Now everyone should have heard the melody. Who now does not hear the melody, as a whistling melody, then I unfortunately can not help. But I have never experienced that someone has not heard the melody. It can only be that one hears in such a way that it does not belong to the voice. Most people hear it as a whistling melody. And there it is separated in the brain, one then hears two separate melodies, respectively one hears a humming tone and in addition a whistling melody. For some people, this whistling melody can no longer be assigned to the voice, while others can associate this whistling tone with the voice. The main thing is that you hear this melody now.

If it has disappeared now, go back to that example where the consonants weren’t there yet, or where the consonant was N. I can fine-tune that again by replacing the T-sound with a D-sound. You’ll notices here, the more sibilants are added, the more this melody now moves into the background of awareness, and the speech center pushes itself into the foreground. But the melody is still there. Particularly interesting is the transition where you’re no longer sure, is it just my imagination, because I know what I’m supposed to hear, or did I actually hear that? And that’s a very interesting transition, because that’s where the conscious mind decides whether it trusts the right hemisphere of the brain. It’s a trust thing. You know that I’m singing the melody, so you can trust me. If you don’t trust me, then trust your own perception. If you mistrust it, then yes, you don’t know. But still the melody is there. I know that I am singing it. Next step.

Now I have added a little bit of movement into the first resonance again. And now I take a little bit more movement into it, and then I’m back at the beginning, which I started with.

And I hope that now most of you have come along up to that point. But if you have lost the melody two or three examples earlyer then it’s still perfect, then the right hemisphere is now activated. And this is an essential foundation to learn to sing harmonics.

BBC Documentary about Wolfgang Saus’ Overtones in the MRI Tube


At the moment you can download the German version of the BBC documentation, e.g. with Mediathekview, from the ZDF Mediathek: 4th Episode, Wonders of Anatomy – Medical Record X – Borderline Cases of Science.
Note: Video and link currently only work from Germany.


Surgeon Gabriel Weston has spent many years studying the functioning of the human body. In the series «Incredible Medicine: Dr Weston’s Casebook» she presents people from all over the world with the most unusual bodies and abilities.

One of them is the unique body control required for overtone singing (from 10:40 min.). In November 2016, a film team from BBC Science Production, Emma Hatherley (production, direction) and Alexis Smith (camera), produced a film at the Institute of Music Medicine at the University Hospital of Freiburg with Prof. Bernhard Richter and Wolfgang Saus.

Live images from the magnetic resonance tomograph show the complex motion sequences in the mouth and throat that are involved in overtone singing. Interviews explain the scientific background of the phenomenon.

Pictures of the Making-of

Links

→BBC Website

Laughing woman holds her ears shut

Can you hear the melody? – Take the Hearing Test

In just 3:20 minutes, this listening test opens your ears to a new dimension of hearing that only around 5% of musicians are aware of: overtone listening. This ability is essential for learning overtone singing. And it is a prerequisite for the practical realisation of vocal and choral phonetics.


New Videos


In 2004, a research group led by Dr Peter Schneider at Heidelberg University Hospital discovered that people perceive sounds differently depending on which hemisphere of the brain is responsible for processing the sound. They developed the Heidelberg Hearing Test to find out whether someone tends to perceive fundamental tones or overtones in a sound. →You can take the Heidelberg test here

My hearing test is different. It tests whether someone is more likely to recognise vowels or overtones in a sound. In the second part, it teaches you to shift the threshold between vowel and overtone perception in favour of the overtones.

→Video about the background.

Saus’ Hearing Test

Relax and listen to the first sound example. I am singing a series of meaningless syllables on a single note. If you recognise a well-known classical melody in it, then congratulations, you have a pronounced overtone hearing and are one of the 5% of people who have this perception spontaneously.

Sound example 1

Download mp3

If you can’t hear the melody, don’t worry. At the end of the listening test you will hear the overtones.

In the next sound examples, I remove more and more sound information from the voice, which the brain interprets as part of speech. Next, I sing the syllables by changing only the 2nd vowel formant. I keep the first one unmoved in a low register. The syllables then only contain Ü sounds, the melody now becomes clearer for some.

Sound example 2

Download mp3

If the melody is now clear, congratulations. At this point 20-30% hear the melody. But maybe you only sense the melody and don’t know whether you are imagining it. Trust your imagination. After all, your hearing picks up the melody, but a filter in your consciousness tells you that the information is not important. Speech recognition is much more important.

I want to reveal the melody at this point: It is “Ode to Joy” from the 9th Symphony by Ludwig van Beethoven. In the next sound example, I whistle it tonelessly. This will help your brain learn what to listen for. Afterwards, listen to sound example 2 again.

Sound sample 3

Download mp3

Is it easier now? If not, listen to the next example.

In sound example 4, I leave out the consonants. Now Broca’s centre, the brain region for speech recognition, has nothing more to do and passes the auditory attention on to other regions.

Sound example 4

Download mp3

Now about 60-80% are on board. If you can’t hear the melody here, you are probably categorised as a fundamental listener in the Heidelberg hearing test. This has nothing to do with musicality. You are in the company of some of the best flutists, drummers and pianists.

In the next example, I completely defamiliarise the sound. I lower the third formant by 2 octaves with a special tongue position until it reaches the same frequency as the second. This creates a double resonance that does not occur in the German language.

Sound example 5

 

Download mp3

The technique is called overtone singing. The ear now lacks information from the usual vocal sound and individual partials become so loud due to the double resonance that the brain separates the sounds and informs your consciousness that these are two separate tones.

You will probably now hear a flute-like melody and the voice. Overtone singing is an acoustic illusion. In fact, you are hearing more than 70 partials. Physical reality and perception rarely coincide.

In the last sound example, I go all the way back to the beginning. Try to keep your focus on the melody the whole time. Listen to sound example 6 more often, it trains your overtone hearing and makes you more aware of the sound details.

Sound sample 6

Download mp3

Our reality is created within ourselves. And it can be changed.

 

Test Your Rhythm Feeling

On ConcertHotels you will find a test that measures your precision of rhythm feeling. Take the test first. Then try singing overtones while you’re doing the test and write your results in the comment below if you like. I look forward to it.

Enlarged right auditory cortex, Wolfgang Saus.

Enlarged right auditory cortex, Wolfgang Saus.

Overtones are usually sung slowly and meditatively, rarely fast and rhythmically (there are exceptions). Overtone singers process sound more in the right hemisphere, drummers more in the left, says Dr. Schneider from Heidelberg University Hospital. Test here how your brain processes sounds.

Is that one of the reasons? An interesting question that has not yet been examined. I suspect that focusing on overtones, at least for the untrained, draws attention away from rhythm.

In my advanced courses, I experience that at first the intonation and sound quality of the keynote suffers when the focus goes entirely to the overtones. Conversely, concentrating on the keynote causes a poorer overtone quality or even complete loss of control of overtone singing. I can immediately recognize from the sound what a student is concentrating on.

If you want to sing polyphonic overtones, i. e. a fundamental melody and an independent overtone melody at the same time, then both tones must receive equal attention. I have developed special exercises for this purpose, which improve the clean control of both notes after a few hours. It would be interesting to examine whether these exercises have an effect on the feeling of rhythm. I will do the rhythm test in my courses as a before-and-after comparison. I’m curious to see what happens.

What are your experiences with rhythm and overtones?

 

Spectacular MRI Video of the Tongue while Singing Overtones

“Ode to Joy”, overtone singing by Wolfgang Saus inside an MRI.

This spectacular dynamic MRI video shows how the tongue moves during overtone singing. The melody of Beethoven’s “Ode to Joy” is created by double resonances which are shaped by the tongue in the mouth and throat. Overtone singing is based on the combination of the second and third resonance frequencies of the vocal tract on a single frequency to increase the volume of a single overtone from the vocal sound.

The second resonance frequency is controlled by the base of the tongue along with the epiglottis. The third resonance frequency is regulated by the space under the tongue, which is larger than it appears in the video, because it also spreads to the side of the tongue frenulum, which covers the space in the image. Overtone singing requires constant fine tuning of the two resonance chambers.

It is not easy to sing in the very loud magnetic resonance tomograph and even record the sound. The noise level is so high that I had to wear hearing protection and couldn’t hear my own overtones. I had to sing by feeling. That the right melody came out is spectacular in itself. It shows that it is possible to develop a body feeling for the exact pitch of the resonances that also works without acoustic control through the ear.

The team in Freiburg has developed highly specialized equipment for recording and filtering. Of course the sound is not HiFi.

MRT footage with kind permission and a big thank you to:
University Hospital Freiburg
Clinic for Radiology – Medical Physics & Institute for Music Medicine
https://fim.mh-freiburg.de/
Prof. Dr. Bernhard Richter
Prof. Dr. Dr. Jürgen Hennig
Prof. Dr. Matthias Echternach
(c) 2015

Turning a child's ear

Test: Are you an overtone or fundamental listener?

Do now also the new hearing test by Wolfgang Saus!


The effect of overtones in the brain seems to be of great interest. That’s why I would like to introduce the corresponding hearing test here. Dr. Schneider, the head of the study, provides on his website a hearing test developed by him, with which I have been testing my Masterclass students for years in order to develop an individual and optimal learning strategy for everyone.

This short test plays a series of tone pairs in which you are asked to decide spontaneously whether the second sound feels higher or lower than the first. At the end you get an evaluation of the degree to which you are fundamental or overtone listener, i. e. whether your hearing processes the sound more in the left brain half (fundamental listener) or more in the right brain half (overtone listener). If you are interested in the background of the work of the Heidelberg researchers, you can download the specialist article here.




On some computers this alternative link seems to work better:



Feel free to leave your score below in the comments. I’m curious to see how overtone singers perform. I’ll let you know my result as soon as the first comments come in. Then in another post I’ll show you what’s behind the sounds of the test.



Sources & Links


Schneider, P, M Andermann, D Engelmann, R Schneider, and A Rupp. “Musik Im Kopf.” DMW - Deutsche Medizinische Wochenschrift 131, no. 51/52 (2006): 2895–97. https://doi.org/10.1055/s-2006-957218.

Schneider, Peter, Vanessa Sluming, Neil Roberts, Michael Scherg, Rainer Goebel, Hans J Specht, H Günter Dosch, Stefan Bleeck, Christoph Stippich, and André Rupp. “Structural and Functional Asymmetry of Lateral Heschl’s Gyrus Reflects Pitch Perception Preference.” Nat Neurosci 8, no. 9 (2005): 1241–47. https://doi.org/10.1038/nn1530.
Schneider, Peter. “Neurologische Klinik: Musikalische Verarbeitung Und Der Auditorische Kortex - Universitätsklinikum Heidelberg.” Accessed February 26, 2009. http://www.klinikum.uni-heidelberg.de/ShowSingleNews.176.0.html?&no_cache=1&tx_ttnews[arc]=1&tx_ttnews[pL]=2678399&tx_ttnews[pS]=1122847200&tx_ttnews[tt_news]=710&tx_ttnews[backPid]=24&cHash=ad6e6b634155a324bbc03302f5c13a36.
Schneider, Peter. “Universität Heidelberg – Pressemitteilungen: Warum Der Eine Geige Und Der Andere Cello Spielt.” Accessed February 26, 2009. http://www.klinikum.uni-heidelberg.de/ShowSingleNews.176.0.html?&no_cache=1&tx_ttnews[arc]=1&tx_ttnews[pL]=2678399&tx_ttnews[pS]=1122847200&tx_ttnews[tt_news]=710&tx_ttnews[backPid]=24&cHash=ad6e6b634155a324bbc03302f5c13a36.

Overtone and fundamental listeners in the orchestra (c) Neurological University Hospital Heidelberg

How Your Brain Handles Overtones

Why One Plays Violin and the Other Cello

First published at Universitätsklinikum Heidelberg on 21.08.2005 (Repost with kind permission)

The ability to perceive fundamental and overtones is anchored in the brain / Scientists from Heidelberg publish a study of orchestral musicians in “Nature Neuroscience”

→ Here you can do the Heidelberg listening test yourself

The same sounds can be perceived very differently by different people. The cause resides in the brain. Because the sound of a tone depends on structures in the cerebrum: Those who hear more overtones and thus rather long-lasting, deep sounds have more neuronal cell substance in the hearing centre of the right cerebral cortex, the so-called Heschl’s gyrus (transverse temporal gyrus). Those who hear the root more strongly or prefer short, sharp tones show this characteristic in the left half of the brain.

These are the results of a study published on August 21, 2005 as an online publication of “Nature Neurosciences” and in the September print edition . Scientists from the Department of Biomagnetism at the Neurological University Hospital in Heidelberg, together with colleagues from the Universities of Liverpool, Southampton and Maastricht, examined a total of 420 people, the majority of whom were music students and orchestra musicians.

Musicality independent of hearing type / connection with rhythm recognition

Extensive listening tests were used to determine whether the test persons belonged to the group of “fundamental listeners” or “overtone listeners“. (For each natural tone, a multitude of higher tones are produced in addition to the fundamental tone, which determines the pitch. These overtones complement the frequency spectrum of a tone and give it its individual timbre.) In 87 subjects from both groups, additional brain structures were visualized in the magnetic resonance tomogram and their functions were measured with magnetoencephalography (MEG). MEG is a very sensitive method for measuring brain activity. It measures low magnetic fields generated by active nerve cells in the cerebral cortex.

Overtone and fundamental pitch listeners in the orchestra (c) Neurological University Hospital Heidelberg

Overtone and fundamental pitch listeners in the orchestra (c) Neurological University Hospital Heidelberg
The Heidelberg study has shown that the seating arrangement in a modern symphony orchestra follows the individual ability of sound perception, which is anchored in the left or right hemisphere of the brain. Fundamental listeners with high instruments (e.g. violin, flute, trumpet) are located to the left of the conductor and overtone listeners (e.g. viola, cello, double bass, bassoon, tuba) to the right. Image source: Neurological University Hospital Heidelberg

“These two types of hearing also exist among non-musical people,” explains Dr. Peter Schneider, physicist, church musician and MEG specialist in the Heidelberg research group. However, the processing of music is also linked to the ability to hear the fundamental or overtones.

“Overtone listeners can perceive long-lasting sounds and tones better,” says Schneider. This ability is located in the right hearing center. The fundamental listeners, on the other hand, stood out due to a more virtuoso playing technique and better processing of complex rhythms, which is linked to the faster processing in the left hearing centre.

Singers and cellists are “overtone listeners”.

Orchestral musicians have also selected their musical instrument according to their listening type, according to another study recently presented by Dr. Schneider at a specialist congress. Fundamental listeners prefer drums, guitar, piano or high melodic instruments, overtone listeners prefer deep melodic instruments such as cello, bassoon or tuba. Singers also belong to this group.

Musicality has nothing to do with the types of hearing, but it can also be found in the brain structures. In a publication in August 2002, again in “Nature Neuroscience”, Dr. Schneider and his colleagues from Heidelberg have already discovered that professional musicians have more than twice as much brain mass in the primary hearing centre as non-musical people. In addition, as MEG measurements have shown, their brains react more strongly to sounds.

For further information please contact:

Dr. Peter Schneider

E-mail: [email protected]

Further information on the Internet:

www.idw-online.de/pages/de/news51506

www.klinikum.uni-heidelberg.de/index.php?id=5503

Image source: Neurological University Hospital Heidelberg

Sources

Schneider, Peter, Vanessa Sluming, Neil Roberts, Michael Scherg, Rainer Goebel, Hans J Specht, H Günter Dosch, Stefan Bleeck, Christoph Stippich, and André Rupp. “Structural and Functional Asymmetry of Lateral Heschl’s Gyrus Reflects Pitch Perception Preference.” Nat Neurosci 8, no. 9 (2005): 1241–47. https://doi.org/10.1038/nn1530.

Tag Archive for: science